Processing, Transportation and Storage of LNG

Dr. James Wegrzyn
Energy Sciences and Technology Department
Brookhaven National Laboratory

Natural Gas Vehicle Technology Forum September 9-10, 2003 Albany, NY

An LNG History Lesson

1997 BNL LNG Marketing Strategy

State Programs

- CALSTART
- USA Pro
- Lone Star
- EBA

Market/Technical Analyses

- BNL
- GLICC
- Vandor

Market Kits/User Guides

- GRI
- New Mexico State U.
- Battelle
- Acurex Environmental

The Five E's of NGVs

Energy Security:

Fuel economy of 48.5 mpg and 10% alternative fuel will eliminate oil imports

Environment:

All vehicles have to meet EPA's 2007 emission standards

Education:

Training, outreach, tiger teams and codes & standards

• <u>Efficiency</u>:

80% well-to-engine efficiency with better than 37% engine efficiency

Economics:

Business Case: Fuel cost, vehicle conversion cost, station cost and engine durability

Features of LNG & L/CNG

- Increase driving range of 2.5 times over CNG is the main advantage of LNG
- LNG has the "use it or lose it" problem
- There is little technical risk with CNG use it if there is a business case
- L/CNG is not in competition with CNG but offers additional refueling sites

Choice between CNG and LNG is clear

High Fuel-Use Assumptions by Vehicle Segment

Vehicle Class	Annual Miles Traveled	Miles per Gallon	Gallons Consumer/Year
Automobile	12,000	30.0 GGE	400
Light-Duty Truck	16,000	16.0 GGE	1,000
Medium-Duty Truck (Class 3-5)	25,000	11.0 GGE	2,270
School Bus	12,500	3.0 GDE	4,170
Transit Bus	40,000	3.5 GDE	11,430
Heavy-Duty Truck (Class 6-8)	100,000	6.5 GDE	15,385
	* CCC = Colleg gooding agriculent		

^{*} GGE = Gallon gasoline equivalent

^{*} GDE = Gallon diesel equivalent

The Dark Secret of LNG

What we like to have

1.7 gal LNG per gallon Diesel

What is *really* happening

2.3 gal LNG per gallon Diesel or more

Use it or Lose it

- "C" is the effective thermal conductance of the piping and station storage tank
- Fuel losses depend on the size of the fleet, station design, and type of onboard fuel tank
- Fleet sizes of more than twenty are needed in this example
- One alternative to atmospheric venting is the use of a gen-set

LNG Infrastructure

- Sources of LNG are from the pipeline, imports, stranded gas, and landfills
- The temperature of the LNG will continually increase from the liquefier to the vehicle
- Hence the pressure, density, and composition of the LNG will also continually change
- These changing conditions make establishing SAE-Best Practices very difficult

Why is LNG Problematic?

Saturation Liquid Curve for Natural Gas

- Problematic because it's a cryogenic fluid mixture that changes with time
- Keeping the LNG cold limits the changes
- The onboard fuel tank determines the LNG allowable temperature
- Tests are planned at OCTA to see if one can use sub-cooled LNG without vapor collapse

Vapor collapse delivery system

Advantages

- Single line fill
- No onboard pressure build device
- Higher heat leak rates tolerated

Disadvantages

- Lower onboard fuel density storage
- Connectors are at higher pressures
- Susceptible to weathering
- Requires an economizer valve
- Can experience large pressure changes between engine and tank
- Susceptible to uneven withdraw from multiple tanks
- Can experience incomplete fill

Vapor return

Advantages

- Connectors are at lower pressures
- No weathering problems
- No atmospheric venting of vapor
- Higher onboard fuel density storage
- Uniform pressure drop between tank and engine
- No economizer valve
- Compatible with second stage heat exchanger
- Complete refill

Disadvantages

- Two line connection
- Requires either a gen-set or access to pipeline
- Requires an onboard pressure build (conditioning) device or pump
- Potential for vapor collapse
- Requires a very low heat leak rate tank

What is the Future of LNG?

- The future is good, IF there is a business case which requires fair taxation and supplies of low cost fuel
- The 2007 NGV(s) will close the increment vehicle cost and fuel economy gaps

Are high-efficiency/durable engines needed?

Yes, a 37% efficient and 300,000 miles service life NG engine will beat the 2007 diesel and make the business case for LNG

What are the Conclusions?

- Learn from mistakes and let the market decide
- Current LNG tax situation is a mess
- Gen-sets are needed on LNG refueling stations
- Seek political support in the near-term
- Gain support by demonstrating markets after 2007
- Off-road and stranded gas markets have potential

